Gwynedd Mercy Academy High School

MATH 0438: AP® Calculus BC

Summer Assignment

Overview: Welcome to AP® Calculus BC! As with most AP® courses, the breadth and depth of the material covered on the AP® Calculus BC exam tends to exceed the amount of class time available. To that end, I would like you to get a head start on the content (specifically, the review of the AP® Calculus AB subtopics) to ensure we have enough time to learn the necessary material and review for the AP® exam next May. This assignment will be your first graded assignment for AP® Calculus BC. If you have any questions, contact Mr. Straniero at <u>dstraniero@gmahs.org</u>.

Part I: Differential Calculus Essentials

- 1. $\lim_{x \to 0} \pi^2 =$
- 2. $\lim_{x \to \infty} \left(\frac{10x^2 + 25x + 1}{x^4 8} \right) =$ 3. $\lim_{x \to \infty} \left(\frac{\sqrt{5x^4 + 2x}}{x^2} \right) =$
- $4. \quad \lim_{x \to 0^-} \left(\frac{x}{|x|} \right) =$

5.
$$\lim_{x \to 7} \frac{x}{(x-7)^2} =$$

- 6. Find $\lim_{x\to 0} \frac{\sin 3x}{\sin 8x}$.
- 7. Find $\lim_{x\to 0} \frac{x^2 \sin x}{1 \cos^2 x}.$
- 8. Find $\lim_{h\to 0} \frac{\sin(x+h) \sin x}{h}$.

9. Is the function
$$f(x) = \begin{cases} 5x+7, x < 3\\ 7x+1, x > 3 \end{cases}$$
 continuous at $x = 3$?

10. For what value(s) of k is the function $f(x) = \begin{cases} -6x - 12, \ x < -3 \\ k^2 - 5k, \ x = -3 \\ 6, \ x > -3 \end{cases}$

11. Find the derivative of
$$f(x) = 2x^2$$
 at $x = 5$.

For problems 12–19, find the derivative.

12.
$$f(x) = x^{4}$$

13. $f(x) = \cos x$
14. $f(x) = \frac{1}{x^{2}}$
15. $8x^{10}$
16. $\frac{1}{a} \left(\frac{1}{b}x^{2} - \frac{2}{a}x - \frac{d}{x}\right)$
17. $\sqrt{x} + \frac{1}{x^{3}}$
18. $(x^{2} + 8x - 4)(2x^{-2} + x^{-4})$
19. $ax^{5} + bx^{4} + cx^{3} + dx^{2} + ex + f$
20. Find $f'(x)$ if $f(x) = (x + 1)^{10}$.
21. Find $f'(x)$ if $f(x) = \frac{4x^{3} - \sqrt{x}}{8x^{4}}$.
22. Find $f'(x)$ at $x = 1$ if $f(x) = \left[\frac{x - \sqrt{x}}{x + \sqrt{x}}\right]^{2}$.
23. Find $f'(x)$ at $x = 1$ if $f(x) = \frac{x}{(1 + x^{2})^{2}}$.
24. Find $\frac{du}{dv}$ at $v = 2$ if $u = \sqrt{x^{3} + x^{2}}$ and $x = \frac{1}{v}$.
25. Find $\frac{dy}{dx}$ if $y = \cot 4x$.

26. Find $\frac{dy}{dx}$ if $y = 2 \sin 3x \cos 4x$.

27. Find
$$\frac{dr}{d\theta}$$
 if $r = \sec\theta \tan 2\theta$.

28. Find
$$\frac{dy}{dx}$$
 if $y = \sin\left(\cos\left(\sqrt{x}\right)\right)$.

- 29. Find $\frac{dy}{dx}$ if $\cos y \sin x = \sin y \cos x$.
- 30. Find $\frac{dy}{dx}$ if $x^{\frac{1}{2}} + y^{\frac{1}{2}} = 2y^2$ at (1, 1).

Part II: Differential Calculus Applications

- 1. Find the equation of the normal to the graph of $y = \sqrt{8x}$ at x = 2.
- 2. Find the equation of the tangent to the graph of $y = 4 3x x^2$ at (0, 4).
- 3. Find the equation of the tangent to the graph of $y = (x^2 + 4x + 4)^2$ at x = -2.
- 4. Find the values of *c* that satisfy the MVTD for $f(x) = x^3 + 12x^2 + 7x$ on the interval [-4, 4].
- 5. Find the values of *c* that satisfy Rolle's Theorem for $f(x) = x^3 x$ on the interval [-1, 1].
- 6. A computer company determines that its profit equation (in millions of dollars) is given by $P = x^3 48x^2 + 720x 1,000$, where x is the number of thousands of units of software sold and $0 \le x \le 40$. Optimize the manufacturer's profit.
- 7. Find the dimensions of the rectangle with maximum area that can be inscribed in a circle of radius 10.
- 8. Find the coordinates of any maxima/minima and points of inflection of the following function. Then sketch the graph of the function.

$$y = \frac{x^4}{4} - 2x^2$$

9. Find the coordinates of any maxima/minima and points of inflection of the following function. Then sketch the graph of the function.

$$y = \frac{3x^2}{x^2 - 4}$$

- 10. A cylindrical tank with a radius of 6 meters is filling with fluid at a rate of 108π m³/s. How fast is the height increasing?
- 11. The voltage, V, in an electrical circuit is related to the current, I, and the resistance, R, by the equation V = IR. The current is decreasing at -4 amps/s as the resistance increases at 20 ohms/s. How fast is the voltage changing when the voltage is 100 volts and the current is 20 amps?
- 12. If the position function of a particle is $x(t) = \frac{t}{t^2 + 9}$, t > 0, find when the particle is changing direction.
- 13. If the position function of a particle is $x(t) = \sin^2 2t$, t > 0, find the distance that the particle travels from t = 0 to t = 2.

For questions 14–20, find the derivative of each function.

$$14. \quad f(x) = x \ln \cos 3x - x^3$$

$$15. \quad f(x) = \frac{e^{\tan 4x}}{4x}$$

- $16. \quad f(x) = \log_6(3x\tan x)$
- 17. $f(x) = \ln x \log x$
- $18. \quad f(x) = 5^{\tan x}$

19.
$$f(x) = x^7 - 2x^5 + 2x^3$$
 at $f(x) = 1$

- 20. $y = x^{\frac{1}{3}} + x^{\frac{1}{5}}$ at y = 2
- 21. Approximate (9.99)³.
- 22. A side of an equilateral triangle is measured to be 10 cm. Estimate the change in the area of the triangle when the side shrinks to 9.8 cm.

23.
$$\lim_{x \to 0} \frac{\sqrt{5x + 25} - 5}{x} =$$

24. $\lim_{x\to 0} \frac{\theta - \sin\theta \cos\theta}{\tan\theta - 0} =$

Part III: Integral Calculus Essentials

1. Evaluate
$$\int \frac{x^5 + 7}{x^2} dx$$
.

- 2. Evaluate $\int (1+x^2)(x-2)dx$.
- 3. Evaluate $\int (\cos x 5 \sin x) dx$.

4. Evaluate
$$\int \frac{\sin x}{\cos^2 x} dx$$
.

5. Evaluate $\int (\tan^2 x) dx$.

6. Evaluate
$$\int \frac{dx}{(x-1)^2}$$
.

7. Evaluate
$$\int \frac{\sin 2x}{(1-\cos 2x)^3} dx$$
.

8. Evaluate
$$\int_{-4}^{4} |x| dx$$
.

- 9. Find the area under the curve $y = 2 + x^3$ from x = 0 to x = 3 using n = 6 right-endpoint rectangles.
- 10. Find the average value of $f(x) = \sqrt{1-x}$ on the interval [-1, 1].

11. Find
$$\frac{d}{dx} \int_0^{x^2} |t| dt$$
.

12. Evaluate
$$\int \frac{1}{x} \cos(\ln x) \, dx$$
.

- 13. Evaluate $\int e^x \cos(2 + e^x) dx$.
- 14. Evaluate $\int \frac{e^{3x} dx}{1 + e^{6x}}$.
- 15. If $f(\theta) = \sin^{-1}(4\theta)$, find $f'\left(\frac{1}{8}\right)$.

- 1. Find the area of the region between the curve $y = x^3$ and the curve $y = 3x^2 4$.
- 2. Find the area of the region between the curve $x = y^3 y^2$ and the line x = 2y.
- 3. Find the volume of the solid that results when the region bounded by $y = x^3$, x = 2, and the *x*-axis is revolved around the line x = 2.
- 4. Find the volume of the solid that results when the region bounded by $y^2 = 8x$ and x = 2 is revolved around the line x = 4.
- 5. If $\frac{dy}{dx} = \frac{1}{y + x^2 y}$ and y(0) = 2, find an equation for y in terms of x.
- 6. The rate of growth of the volume of a sphere is proportional to its volume. If the volume of the sphere is initially 36π ft³, and expands to 90π ft³ after 1 second, find the volume of the sphere after 3 seconds.
- 7. Sketch the slope field for $\frac{dy}{dx} = \frac{x}{y}$.